Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672546

RESUMO

Recent research has implicated the gut microbiota in the development of lymphoma. Dysbiosis of the gut microbial community can disrupt the production of gut microbial metabolites, thereby impacting host physiology and potentially contributing to lymphoma. Dysbiosis-driven release of gut microbial metabolites such as lipopolysaccharides can promote chronic inflammation, potentially elevating the risk of lymphoma. In contrast, gut microbial metabolites, such as short-chain fatty acids, have shown promise in preclinical studies by promoting regulatory T-cell function, suppressing inflammation, and potentially preventing lymphoma. Another metabolite, urolithin A, exhibited immunomodulatory and antiproliferative properties against lymphoma cell lines in vitro. While research on the role of gut microbial metabolites in lymphoma is limited, this article emphasizes the need to comprehend their significance, including therapeutic applications, molecular mechanisms of action, and interactions with standard chemotherapies. The article also suggests promising directions for future research in this emerging field of connection between lymphoma and gut microbiome.

2.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257323

RESUMO

Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.


Assuntos
Canabidiol , Cannabis , Alucinógenos , Doenças Neuroinflamatórias , Terpenos/farmacologia , Agonistas de Receptores de Canabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255944

RESUMO

Emerging research has revealed a complex bidirectional interaction between the gut microbiome and cannabis. Preclinical studies have demonstrated that the gut microbiota can significantly influence the pharmacological effects of cannabinoids. One notable finding is the ability of the gut microbiota to metabolise cannabinoids, including Δ9-tetrahydrocannabinol (THC). This metabolic transformation can alter the potency and duration of cannabinoid effects, potentially impacting their efficacy in cancer treatment. Additionally, the capacity of gut microbiota to activate cannabinoid receptors through the production of secondary bile acids underscores its role in directly influencing the pharmacological activity of cannabinoids. While the literature reveals promising avenues for leveraging the gut microbiome-cannabis axis in cancer therapy, several critical considerations must be accounted for. Firstly, the variability in gut microbiota composition among individuals presents a challenge in developing universal treatment strategies. The diversity in gut microbiota may lead to variations in cannabinoid metabolism and treatment responses, emphasising the need for personalised medicine approaches. The growing interest in understanding how the gut microbiome and cannabis may impact cancer has created a demand for up-to-date, comprehensive reviews to inform researchers and healthcare practitioners. This review provides a timely and invaluable resource by synthesizing the most recent research findings and spotlighting emerging trends. A thorough examination of the literature on the interplay between the gut microbiome and cannabis, specifically focusing on their potential implications for cancer, is presented in this review to devise innovative and effective therapeutic strategies for managing cancer.


Assuntos
Cannabis , Microbioma Gastrointestinal , Alucinógenos , Neoplasias , Humanos , Agonistas de Receptores de Canabinoides , Dronabinol , Neoplasias/tratamento farmacológico
4.
Biomolecules ; 13(11)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002250

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Proteínas Amiloidogênicas/metabolismo
5.
Syst Rev ; 12(1): 143, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592293

RESUMO

BACKGROUND: Subjective cognitive impairment (SCI) substantially increases dementia risk and is often conceptualised as the preclinical asymptomatic phase of the cognitive decline continuum. Due to the lack of pharmacological interventions available to treat SCI and reduce dementia risk, and the popularity of herbal and nutritional medicines, the primary aim of this review was to investigate the efficacy on cognitive function and safety of herbal and nutritional medicines (relative to a control) for older adults with and without SCI. The secondary aims were to describe the study characteristics and assess the methodological quality of included studies. METHOD: Five databases (Cochrane, MEDLINE, CINAHL, PsycInfo, and EMBASE) were searched from database inception with weekly alerts established until review finalisation on 18 September 2022. Articles were eligible if they included the following: study population of older adults with and without SCI, herbal and nutritional medicines as an intervention, evaluated cognitive outcomes and were randomised control trials. RESULTS: Data were extracted from 21/7666 eligible full-text articles, and the risk of methodological bias was assessed (with SCI = 9/21; without SCI = 12/21). Most studies (20/21) employed parallel, randomised, placebo-controlled designs and were 12 weeks in length. Herbal supplements were widely used (17/21), namely a form of Ginkgo biloba (8/21) or Bacopa monnieri (6/21). Measures of cognition varied across studies, with 14/21 reporting improvements in at least one domain of cognitive functioning over time, in the intervention group (compared to control). A total of 14/21 studies were deemed as having an overall high methodological risk of bias, 6/21 had some concerns, and only one study (using an SCI population) was assessed as having a low risk of methodological bias. CONCLUSIONS: Overall, this review found that there is a low quality of evidence regarding the efficacy of cognitive function and safety of herbal and nutritional medicines for older adults with and without SCI, due to a high risk of bias across studies. Additionally, further work needs to be done in classifying and understanding SCI and selecting appropriate trial primary outcomes before future studies can more accurately determine the efficacy of interventions for this population.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Idoso , Cognição , Disfunção Cognitiva/tratamento farmacológico , Bases de Dados Factuais , MEDLINE , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Cerebellum ; 21(3): 404-424, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34324160

RESUMO

GFAP-IL6 transgenic mice are characterised by astroglial and microglial activation predominantly in the cerebellum, hallmarks of many neuroinflammatory conditions. However, information available regarding the proteome profile associated with IL-6 overexpression in the mouse brain is limited. This study investigated the cerebellum proteome using a top-down proteomics approach using 2-dimensional gel electrophoresis followed by liquid chromatography-coupled tandem mass spectrometry and correlated these data with motor deficits using the elevated beam walking and accelerod tests. In a detailed proteomic analysis, a total of 67 differentially expressed proteoforms including 47 cytosolic and 20 membrane-bound proteoforms were identified. Bioinformatics and literature mining analyses revealed that these proteins were associated with three distinct classes: metabolic and neurodegenerative processes as well as protein aggregation. The GFAP-IL6 mice exhibited impaired motor skills in the elevated beam walking test measured by their average scores of 'number of footslips' and 'time to traverse' values. Correlation of the proteoforms' expression levels with the motor test scores showed a significant positive correlation to peroxiredoxin-6 and negative correlation to alpha-internexin and mitochondrial cristae subunit Mic19. These findings suggest that the observed changes in the proteoform levels caused by IL-6 overexpression might contribute to the motor function deficits.


Assuntos
Proteoma , Proteômica , Animais , Interleucina-6 , Camundongos , Doenças Neuroinflamatórias , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos
8.
Trials ; 20(1): 345, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182153

RESUMO

BACKGROUND: Due to an ageing population in Australia there has been an increase in the number of older adults with subjective cognitive impairment (SCI), a self-reported decline in cognitive function associated with an increased risk of mild cognitive impairment and dementia. There is no current, recommended treatment for SCI; therefore, the effectiveness of a supplement approved by the Therapeutic Goods Association that has the potential to enhance cognitive function in an at-risk cohort should be tested. The primary aim of this proposed research is to determine the efficacy of 6 months of treatment with BioCeuticals Cognition Support Formula® (containing Bacopa monniera (brahmi), Ginkgo biloba, Panax ginseng and alpha-lipoic acid) on cognition in older adults with SCI (utilising the CogState® one card learning and identification tests as co-primary outcome measures of visual short-term memory and attention; mean speed (ms), accuracy (%), and total number of hits, misses, and anticipations) compared with placebo. The secondary aims are to assess an improvement in other cognitive domains (executive functioning, processing speed, and working memory), evaluate safety, adverse effects, and determine efficacy on mood, fatigue, and neurocognition. It is expected that improvements across the study timepoints in the co-primary outcomes in the active treatment group (compared with placebo) will be evident. METHOD: One-hundred and twenty participants will be recruited for the randomised, double-blind, placebo-controlled study. Participants will be randomly assigned to one of the treatment groups (active or placebo) at a 1:1 ratio, and will be required to complete a series of cognitive (using CogState®), mood (using the Depression, Anxiety, Stress Scale (DASS-42) and Short Health Anxiety Inventory (SHAI)), and fatigue (using the Functional Assessment of Chronic Illness Therapy Fatigue Scale (FACIT-F)) tasks at baseline (0 months), the midpoint (3 months), and the endpoint (6 months). These tasks will be evaluated between timepoints (baseline vs. midpoint, midpoint vs. endpoint, and baseline vs. endpoint). Neurocognition will be measured by electroencephalography at baseline and at the endpoint in half of the participants. Adverse effects will be documented over the 6-month trial period. DISCUSSION: This is the first study to test the efficacy of Cognition Support Formula® on cognition in older adults with SCI. As people with SCI have an increased risk of dementia, and there are limited treatments options for this population, it is important to assess a supplement that has the potential to enhance cognitive function. TRIAL REGISTRATION: Universal Trial Number (UTN), U1111-1196-9548. Australian New Zealand Clinical Trials Registry, ACTRN12617000945325 . Registered on 30 June 2017.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Fitoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Bacopa , Suplementos Nutricionais , Método Duplo-Cego , Eletroencefalografia , Ginkgo biloba , Humanos , Avaliação de Resultados em Cuidados de Saúde , Panax , Extratos Vegetais/administração & dosagem , Ácido Tióctico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...